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SUMMARY:  

A tremendous amount of data related to wind has been recorded over the last decade in 

Mediterranean ports in order to understand the effects of thunderstorm winds on civil 

engineering structures. Automated classification techniques have thus been developed to detect 

these events of interest in such large databases. To ensure the autonomy and interpretability of 

the process, it is convenient to use a machine learning classifier trained on shapelet transforms. 

But the current algorithm is not able to identify a number of true positives and uses a lot of 

computational power. New techniques (Wavelet Decomposition, Randomized Sampling and 

Ensemble Classifier) are hence introduced in this paper to solve these problems. 
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1. INTRODUCTION 

To gain a better understanding of the devastating effects that thunderstorm winds can have on 

civil engineering structures, more particularly in Mediterranean ports, extensive measurement 

campaigns have been carried out during the last decade (Solari et al. 2012; Burlando et al. 2018). 

To do so, numerous monitoring systems and stations have been installed to record high-

dimensional wind field measurements in a continuous way and with a high sampling rate. Given 

the tremendous amount of data that they generated over the years, it has become necessary to 

develop automated methods dedicated to detecting events of interest like thunderstorms from the 

analysis of time series.  
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Several techniques existed before (De Gaetano et al. 2014), but they often required the 

intervention of expert judgement through a detailed visual inspection of the time series to 

compensate for the absence of some statistics on which they are based. From a big data 

perspective, the use of machine learning has therefore appeared as a potential solution to ensure 

the autonomy of the process. Two main techniques have emerged since then. (Chen and 

Lombardo 2020) used a one-dimensional convolutional neural network classifier trained on 

segmented records while (Arul and Kareem 2021) used a random forest classifier trained on 

shapelet-transformed signals. 



Shapelets are highly discriminative sequences that are discovered in the time series and that 

somehow represent the respective signature of any wind state. In a nutshell, these shapelets have 

first to be identified in the training dataset and can then be compared to the testing dataset to 

classify the recordings into two or more groups. By detecting local or global similarities in time 

series, this method reproduces what humans would naturally do when visualizing the 

measurements and thus has the advantage of being easily interpretable. In (Arul and Kareem 

2022), this method also identified more thunderstorms than the above-mentioned statistical 

approaches and divided data into three categories, including intermediate events, instead of two. 
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However, despite the already high accuracy of the algorithm, some recordings were no longer 

considered true positives for thunderstorm events although they were before. In addition, and in 

general, the discovery of shapelets is also an extremely consuming step in terms of 

computational power when performed using brute force. To solve these problems, new 

techniques are implemented in this paper. Overall, the proposed method still relies on Shapelet 

Transforms (ST) but significant differences are introduced in the algorithm. They are discussed 

and illustrated in the next section. Meanwhile, the results obtained on the Wind and Ports 

datasets will be provided in an extended version of the present paper. 
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2. DIFFERENCES WITH THE PROPOSED APPROACH 

In the first stage, the classification process starts by creating subsequences of the time series that 

are candidate shapelets. The similarity between these parts of signals is then measured and the 

quality of each shapelet is finally assessed. In the second stage, the minimum distance between 

the best shapelets and each time series is calculated and serves to train a machine learning 

classifier. This is the global methodology in which the following techniques are now introduced. 
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2.1. Wavelet Decomposition 

In order to have a better understanding of the patterns associated with each time and frequency 

scale, a discrete wavelet transform is used to decompose the records into one low-frequency 

approximation component and a few high-frequency detailed components, as shown in Figure 1. 

This process accordingly divides the classification process into several sub-tasks, i.e. one for 

each component, and is supposed to improve its overall performance (Yan et al. 2020). 
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2.2. Randomized Sampling 

Instead of considering all subsequences of all time series in the training dataset, a random 

number of them is skipped at each iteration (Renard et al. 2015). The probability distribution of 

this number is chosen to ensure that the pool of candidate shapelets remains diversified but is 

drastically reduced in size. The computational time needed to discover shapelets is hence 

expected to decrease by the same amount as well. This is schematically represented in Figure 2. 
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2.3. Ensemble Classifier 

The two previous techniques are typically able to create several classifiers as they are or can 

respectively be trained on the transforms obtained from different sets of shapelets. It is necessary 

to perform an additional task which consists in reunifying their results, as represented in 

Figure 3. By combining the various views that the classifiers have on the data, the resulting 

algorithm is more stable and provides a more accurate decision. 
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Figure 1. Wavelet Decomposition (db2) – Livorno, Anemometer 4, October 2 at 1PM and 15 at 2AM, 2015). 
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3. RESULTS AND CONCLUSIONS 

This new algorithm will eventually be applied to classify the data recorded during the “Wind and 

Ports” project by ultrasonic anemometers in the Mediterranean ports of Genoa, La Spezia, 

Livorno and Savona in Italy, as well as Bastia in France. The results will be compared to the 

previous ones to evaluate the improvements due to the addition of new features, as detailed 

hereabove, in using less computational power and detecting more true positives. 

 

Given that the proposed procedure requires training more classifiers, depending on the number of 

levels adopted for the wavelet decomposition, but creates fewer shapelets candidates due to the 

randomized sampling, depending on its probabilistic description, the reduction of the overall 

computational time obtained while varying these main parameters will be extensively discussed.  
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                  Figure 2. Randomized Sampling.                                          Figure 3. Ensemble Classifier. 
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